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ABSTRACT
It is shown that if the knot sequence £ = (ti):. satisfies

(i) For some m € [1, 2§£§) ,

t - t, t,
o' < lim inf i:r+1 . t1+r < Tim sup 1:r+1 - t1+r <m
r i i+ i r i i+1 i
and
t -t
(ii) m : = sup '3:-‘_:-3. < =
= li-3]<€1 5341 7 75

then for any given bounded sequence y € m(8) there exists exactly one cubic
spline s with knots t; such that

s(ti) =Y, for all ie2z2 .

aMS (MOS) Subject Classification: 41A15
Key Words: cubic spline interpolation, exponential decay, Lagrange's
multiplier

Work Unit Number 3 - Numerical Analysis and Computer Science
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SIGNIFICANCE AND EXPLANATION

o

Cubic spline interpolation provides a good and handy method to
approximate a given function or to fit a given set of points. However, such
an interpolation process does not always converge. It is known that the local
mesh ratio (thgt of tﬁe lengths of two consecutive intervals) is less than

3475
2 !

the interpolation process works for any given bounded data.
This paper continues such investigation. It is shown that the above
. J -
restriction on the knots may be relaxed. Thus, for a wider class of knot

/ seqﬁences, the cubic spline 1ntetpol9tion can be still applied. Hopefully,

this would make such interpolation process more feasible in practice.
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4
' ON A CONJECTURE OF Co Ae MICCHELLI CONCERNING CUBIC SPLINE
INTERPOLATION AT A BIINFINITE KNOT SEQUENCE
s Rong-qang Jia
]
1. Intrgductzon. Let t: = (ti) - be a biinfinite, strictly increasing seyuence,
EE et 2 21 1 -
set
t oo = lim ¢t 0
£ i"t“
let k be an integer, k 2 2, ana denote by Sk N the collection of spline functions of
’
=
deyreee < k with knot sequence L. Fxplicitly, Sk € consists of exactly those k ~ 2
'=
times continuously diftferentiable tunctions on
1
I = (t__,t))
i which, on each interval (ti,ti+,). coincide with some polynomial of deqree < k. Let
i e
3 msk,g ’klg n m(x) , s
1.e., the normed linedr space of splines for which
sl := sup |s(t)]
tel
. ig finite, We are interested in the
Bounded Interpolation Problem (B.I.P.), To construct, for given y € m(Z), some
\] fo hich
s € msk’s r whic
i () s|
£=y -
H We will say that the B.I.P. is courrect (for the given knot sequence 5) if it has exactly
i one solution for each y € m(®).
g in case k = 4 (cubic spline interpolation), de boor [2) showed that if the local

mesh ratio

Ati
m = sup s— (with At. := t, -t.)
t L. A .
t |1_3|“ c) i i+l i
_ +/5 . _
is less than > then the H.I.P. is correct., A similar result was also obtained

independently by Zmatrakov (7). The basic idea of [2] was the exponential decay law, which

Sponsored by the United States Army uhder Contract No. DAAGZY=BU=C=-0U41.




could be traced back to [1]. This idea was developed in de Boor {3) and Micchelli [6].

For cubic spline interpolation, Micchelli turther raised the following conjecture (see [6);

pPs 236).
Conjecture. It ) .
-1 T — r
. < lim i -
(2) m lim LQf (Ati+r/Aci_1) € lim sup (Ati+r/Ati—1) <m
r i r i
/5
for some m & [1, 3; 5), then the B.1.P. is correct for k = 4,

In hindsight, it is easy to see that this conjecture is faulty. This can be clarified

by the following

Example. Wwrite hy == tiert ~ ti' Let
to = 0
1.n 1,2n+1 <
hzn = (30 . h2n+1 - (2) for integer n >0 ,
h . = h., for integer i > 0 .,
=1=i i
Then 1 .1_
L lim inf ( rY ¢ Tim sup ( 1+r)r <2 ,
2 . h.
r i i-1 r i i-1
but ’

ti+1

m_=  sup = o

£ fissle S5a T ,
Let m* and mn~ have the same meaning as in [4]. Since the knot sequence t is
symmetric with respect to the origin, we must have n* = m~. If this B.I.P. is correct,
then [4] tells us that m, < ®, which is a contradiction.
The above example au;gests to us that the condition mt < ®» ghould be added to the
assumption. Thus we will prove the following )
Theorem 1. 1f a Knot sequence t satisties (2) with V €@ < (3+/5)/2 and
(3) n <>,
then the B.I.P. is correct for k = 4. )
Remark. This theorem covers de Boor's results for cubic splines with bounded global
mesh ratio or with local mesh ratio < 3;/§ (gsee {(2) and [3]), N
!
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let

2. The basic formulae for cubic spline ingetpolatxon.

(4) h

i i Yar

1= €, - )o M

LRV S RS PN

It g € n$4 N satisfies (1) for some y @ m(Z), then
'-

i i=1 i1 i
. ' =
(s) Ais (ti-l) + 2sl(ti) +ws (ti+?) 3‘1 T + 3y, Y + 1€ 8% .
i i
Moreover, it is easy to check that
(x-t_)(e -x)? (x-t,_12(e -x) Yoy * ¥
B ——— gt - — e o0 =
s(x) 3 8 (ti_1) 3 8 (ti) + 3 +
h_ h,
i i
t +t Yy - ¥
1 i-1 i 2 2 i i-1
(6) * =5 (x - 3 )l(ti-x) + 4(ti-X)(x-ti-l) + (x-ti-t) ].__1;__—__
h i
i
for x € [ti-l'til .
2 for j =i ,
(7} Vi € Z, Ali,}) = A for j =i-1 ,
ui for j = i+y ,
0 for 3 € \{i-1,3,i+1) .
Then A is a tri-diagonal % x Z-matrix. For any B8 ¢ m(%) we have
Vi € 2, IAiBi_1 + 25i + “1“i+1| < kiIBl. + 2080« uilﬁl. = 3181, ,
showing IAl € 3., Here, we view A as a mapping from m(Z) to m(%). Furthermore,

Y. =y

For a given knot sequence L

= hil(hi §h1+‘), iesxs .

vi €g, l/\isi_1 +28 +uB |2 2|Bil - A 180 - u 181 = 2|81[ - 181, .

Hence [IABY_ > sup{Zlﬂil - 180} = IBI_. This shows that A~' exists ana MA~'1 < 1,

and

3. The ex
DRBEETR it 32T TPy
Lemma 1, For any knot sequence ;,
(8) TRERE: z""", vi, j €8
(9) A"(j,x)a"(j+t,i) <O, ¥, jes ,
-3-
—— T T

iez

ponential dec:x. The following lemma plays an essential role in this paper.




Moreover, it t satisfies the following condition: for some integer ¢ » 0

.:"_ 'i'ji i=3| »
(10) hx/hj <ITm whenever [i-j| > r ,
then
1) IA_I(j,i)l < {1+ mal + N+ mal + maz)-|i-3| whenever |i-)| > r .

: . . . - . - -1
Proof. For simplicity we fix i and write bj t= A 1(3,1). Since A 1 € 3,

b{*) € m(%®)., By AA") = 1 we have

1 for j =1 ,
(12) A.b. + 2b, + ub =6 =
3 1= 3 i 1) 0 for j g1 .

we claim that

(13) ib. | for all j <i .

3 < ‘bj+1|

If not, then tnere exists j, < 1 such that ij | > [bs From (12) we have

) +1|

|b. 1] a |[-(2b, + u,

- ))/x
g g 3, J +

A ?» (2{b, - M
)/ l ”30' uJo'J*‘

> (2-u )b, /A, = b, |2 + A, /A, 2 2|b. | .
373 3, g SP I,

Then by induction on j, we can easily show that ij_1| > Z{bjl for all 3 € Jo+ Hence
=
In| > 2 v by | for j < 3j,. This contradicts the fact b € m(3). Similar to (13), the
0
following also holds:

13 1 ¢ |b, £ ) i .
(13*) leI | J_‘l or all j > i

Now (12) and (13) yield that

T3 3+1| = |zb + A Dy ‘l/u > (zlb | - x |b |)/uj
(14)
> (22 )b l/u. = |b_j*(V + u./m, > 2{b,| for j <i .
similarly 3 J ] 3 ] 3 J
14° > ;> i
(14") |bj_1| 2|bj| for j > i .

In particular, lbi-ll < |bi| and ‘bi+1| < lbll. In connection with (12) we obtain

VAL 2y s by = Ay 20 e e, |

(15)

> 2ip, | - A |b -u

| 1ﬂl (2 -\ - ui)lbil = {0, | .

il

-4~
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‘This proves (8) for j =i, For j # 1, (8) comes from (14), (14') and (15). For the

‘ rest of the proof we may assume j < 1 without any loss. To prove (9) we argue
3 L. . .
indirectly, If bjobjo+1 » 0 for some jp ¢ i, then
b, | > |A, b, | = {2b, + u b, | »2lb, | .
3, 3p 370 S PG PNB PAL I
Compariny the above inequality with (13), we must have bj = 0 for all j <€ jo. It would
t cause all bj = O, which is absurd. Now we can write down
4
: (1e6) =-b, b, =: 2 + 2q! for j < i
341725 93 ’
{ with q; > 0, Let qy == hj+1/hj’ We deduce from (12) that, for 3Jj < i-1,
. b, b1 + A, b, A, b,
: _ b1+2 . 1:1 b‘l+1‘l -2, ﬂlf‘.b h PN 2, + q'+1.55%_7
3 341 3410541 o1 Y Py 3 J 9
t
i
| 4q! + 3
3 - et ) - —_—
J 2+ 2qj+1(' 2(2+2q5)) 2+ 24, CHER
This shows that
* 4q! + 3
] = ._-J_ 9 -
F (17) q]+1 qj*1 4q5 raw for j < i=-1
: ) Let
. ' 4q! + 4
Y (18) p. i= —d——gq' .
g 3 4q! + 73
3 J
|
E_ It is easy to verify that
‘ / 2
‘ (19) 2+ 29! =1 +p. +71 +p.+p. .
95 Py Py T Py
Now (16) and (1Y) give us
i-1 i-1 i-1 5 ]
(20) lb/bl = 0 |bo, . /b ] = N (2+2g) =1 (1 +p +V/1+p +p9)
¢ i . k+1
j k=3 k - 3 k=3 k K K
It follows from (17) and (18) that
i o . ' i- + J
, 1"1 o - xﬂl 4q§ + 4 q-) . 1nl 4qk +4 . 4qk_1 + 3 a
] ]
k= K k=3 4qk + 3 7k k=) 4qk + 3 4qk_’ + 4 'k t
(21)
' 4 ] j=1 -
{ - 4q1_1 * . 4?1:J v . ln q. » 3 in1 q, = 3. El
. [ .
R N A N
-m




If &t satisties (8) and |i-j| » r, then

1=1 h
3,.4,3,8 -li-3] | -li-3]
(22) kl-lj Py > y hj > 2° 3% L

Therefore lemma 1 will he proved, once the following lemma is established:

Lemma 2. Suppose py,...,p, and p are nonnegative real numbers with p" =

p1p2"'pn. Then

n —
n (1+pi*/‘l+pi+pf)>(1+p+l/1—+p+p2)n .

i=1
Proof. Let
F(p,,***,p P.) := ; (" +p, + /1 +p, + pz) .
1" "Fn-1""n i i i
i=1
n
We want to determine the minimnm of the function F under the constraint I p; = ¢
f=1

where c is a constant, c = p. If some By > (2+2p)n, then

n
Flp,,o*op ) > (2 + "> N (1 p+71 +p+ pz)n > inf (F(p1:"‘opn)) .

i=1 llpi-c
Hence
inf {P(p,,"'.p )} = inf {F(p,,***p )} .
n 1 n
Ip, = p, =
Vt,pi‘*2+2p)
0 0 2 9 0 0
Thus there exists a point (91""'pn) with 11 p; =¢ such that P(p1,...,pn) =
i=1

inf (P(p1,...,pn)}. To find (p?,...,p:) we shall use the method of Lagrange
Iip =¢c
i

multipliers and get

.(p"uonpn) = P(p1,"'p“) - XP1ooopn .

¢
Then 3p_| 0 0. =0 i=1...,n that is
i (910.'.19")
0
/ 2p, + 1
n(1+pg+1+pg+(pg)2)-(l+ L ,)-Aﬂpgno.
bl z/l + p(.) + (po)2 i#t
i i
It follows that 0
2[)1 + 1
0
p, (1 + e ] n
i f 0
0 0,2 I p
1 +p, + (p,) 3
i i - ) e =1 _ — .
——— n — —
0 0 0,2 0 0 0,2
1+pif1+pt+(pi) n(lfpj+/1+pj+(pj))

3=1

-6




- el e

Iy 3
Therefore
Qo ] .
4 (23) flp, = tlp) tor all i, k€ (1,e0e,n} ,
T where
x(l N 2% + 1 )
ZJG + X + X

1 X -1
¥ f(x) = =~ 4 .
1 +x +71 4 x+ x2 2 2/G + x +4;2

An easy calculation yields

b
1 . - 3(x + 1)
(24) £'(x) 2)3/2 >0 for x 20 .,

4(1 + x + x

This shows that f 1is strictly increasing on [0,®), Thus (23) and (24) give

0=¢0'~0_
P, =P, =P -

This ends the proof of lemma 2. Also the proof of lemma 1 is complete,

- e

4. The proof of theorem 1. By the hypothesis (2) there exist a positive integer r

T e - — e

+/5
and a real number m, with m < mg < 32 £l such that

3 i3]

<3 -
hi/hj 7 "o whenever |i-j| > r .

Then by lemma 1,

2-1i-3l if |i-j} <r .

S v e s o e v

(25) vi, e, |a"'(3,1)] €

i -
: -1 / A -2, -|i- . .
' emg +1+m’ +a ) ‘ )|, if Ji-i) > r .

IR s
1Y
-

r

| M= (mg) < @
i and
3 Y, = Y, _ Yioa = Y
E cias»\i-ih“+3ui- ‘;' liez .

i i+

Then it follows that
(26) st(e) = ] A“(j.i)e1= y A“(j,i)ci+ 3 A-l(j,i)ci .
ies Ji-j|«<r Ji=j|or

By the hypotheses of theorem | we have the following estimates for et

-7=




chl oyl «(14M) ¢ %r-‘ 6M(1+t4) * Myl * %— if 3-i| < ;
i 3
(27) I !
. 1 . . _1_ . ‘l-J
Icil o vyl * (14M) « — < 6llm) Wyl * o= * my . 2f |3-1) 2
i b}
write
-1 - -1 -23y=1
8 := mo{i +m, o+ /:4+ my o+ mg ) .

Then 6 < 1 as lony as mny < 3;/3. Applying (25) and (27) to (26), we obtain

[e' (e, )] < 6m(1+M) * Byl e 213 sy, s ol
3j h, . » h, ;. ¢
5 {j-if<r 3 {i-jfor
(28)
. L] ‘
< const iyl T
3
Furthermore (6) tells us
< ] . ' .
max |s(x)) const(hj_1|s (tj_1)| + hj |s (tj)| + tyl) N
t,  SxS<t
j=1
which in connection with (28) yields the desired result

fgf_ € const * Iyl ,

Our proof is complete.

-8~
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